Test Yourself Mark Scheme

$\begin{aligned} & \text { TOPIC } \\ & 5 \\ & \hline \end{aligned}$	1(i)	9	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	for $3^{2} \mathrm{oe}$
	1(ii)	8 (condone -8 or ± 8)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	for $16^{0.25}=2$
	2(i)	$4 \mathrm{x}^{4} \mathrm{y}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	for two elements correct
	2(ii)	32	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	for $2^{5} \mathrm{oe}$
	3	$\frac{4}{27}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	numerator denominator
$\begin{aligned} & \text { TOPIC } \\ & 6 \end{aligned}$	1	Grad of $\mathrm{AB}=-3$ Grad of $B C=\frac{1}{3}$ product of gradients $=-1$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	either gradient product of gradients need to equal -1
	2	$(3,6)$	B1	
	3	Coordinates (0,2) (0.5,0)	M1 M1 A1A1	for $\mathrm{y}=-4 \mathrm{x}+\mathrm{c}$ for $y=-4 x+14$ one mark for each set of coordinates
	4	$y=3 x-7$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Gradient $=3$ Subst in $(4,5)$ into their ' $y=m x+c$ '
$\begin{aligned} & \text { TOPIC } \\ & 7 \end{aligned}$	1	Cubic the correct way up x -axis cuts at $-1,2,4$ shown y -axis cuts at 8 shown	$\begin{aligned} & \hline \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
	2	Sketch of cubic correct way up Curve through (0,0) Curve touches x -axis at $\mathrm{x}=3$	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
	3	Correct graph with clear asymptote at $\mathrm{x}=2$ ($0,-0.5$) shown	$\begin{aligned} & \text { G2 } \\ & \text { G1 } \end{aligned}$	(G1 for only one branch correct0
	4	10	B1	
TOPIC	1	$y=x^{2}-8 x+5$	B1	
	2	$\begin{aligned} & \mathrm{f}(\mathrm{x}-3)=(\mathrm{x}-3)^{3}-5(\mathrm{x}-3)+2 \\ & \left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)(\mathrm{x}-3) \\ & \mathrm{f}(\mathrm{x}-3)=\mathrm{x}^{3}-3 \mathrm{x}^{2}-6 \mathrm{x}^{2}+18 \mathrm{x} \\ & +9 \mathrm{x}-27-5 \mathrm{x}+15+2 \\ & \quad=\mathrm{x}^{3}-9 \mathrm{x}^{2}+22 \mathrm{x}-10 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Substitution Partial expansion of cubic term All correct unsimplified Correct consolidation
	3	$\begin{aligned} & \mathrm{f}(\mathrm{x}-4)=2(\mathrm{x}-4)^{3}+7(\mathrm{x}-4)^{2}- \\ & 7(\mathrm{x}-4)-12 \\ & 2 \mathrm{x}^{3}-17 \mathrm{x}^{2}+33 \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	Substitution Correct expansion of one pair of brackets correct completion to given answer
	4	$\begin{aligned} & (x+1-3)(x-2-3)(x-4-3) \\ & \text { ie } \quad(x-2)(x-5)(x-7) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow one slip Oe

$\begin{aligned} & \text { TOPIC } \\ & 9 \end{aligned}$	1	$\begin{aligned} & \text { Tan } 42^{\circ}=\frac{\text { opp }}{\text { adj }} \\ & 0.9004=\frac{\text { height of pole }}{15} \\ & 13.5(06) \mathrm{m}=\text { height of pole } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	2	$\pm \frac{\sqrt{13}}{4}$	B3	B2 for either $-\frac{\sqrt{13}}{4}$ or $\frac{\sqrt{13}}{4}$ or $\pm \frac{\sqrt{13}}{\sqrt{16}}$ oe or M1 for $\sqrt{13}$ seen
	3	$\begin{array}{r} (0,0) \\ (90,1) \\ (270,-1) \\ (360,0) \\ \hline \end{array}$	$\begin{aligned} & \text { B1 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { TOPIC } \\ & 10 \end{aligned}$	1(i)	$\begin{aligned} & \mathrm{C}=141.1 \ldots \ldots \\ & \text { Bearing }=038.8 \text { (accept } \\ & 038.9 \text {) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Correct attempt at cosine rule Correct full method for C C Bearing
	1(ii)	3030 to 3050 acceptable	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct use of 0.5 xaxbxsin C
	2	$\begin{aligned} & \mathrm{AB}=7.80(\text { or better, } 7.799 \ldots) \\ & \text { Area }=52.2 \text { to } 52.3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct use of sine rule AB $2 \mathrm{x} 0.5 \mathrm{x} \text { 'their } \mathrm{AB}^{\prime} \mathrm{x} 11.4 \mathrm{x} \sin 36$ Area

